(5^2)+(13^2)=x^2

Simple and best practice solution for (5^2)+(13^2)=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5^2)+(13^2)=x^2 equation:



(5^2)+(13^2)=x^2
We move all terms to the left:
(5^2)+(13^2)-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+194=0
a = -1; b = 0; c = +194;
Δ = b2-4ac
Δ = 02-4·(-1)·194
Δ = 776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{776}=\sqrt{4*194}=\sqrt{4}*\sqrt{194}=2\sqrt{194}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{194}}{2*-1}=\frac{0-2\sqrt{194}}{-2} =-\frac{2\sqrt{194}}{-2} =-\frac{\sqrt{194}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{194}}{2*-1}=\frac{0+2\sqrt{194}}{-2} =\frac{2\sqrt{194}}{-2} =\frac{\sqrt{194}}{-1} $

See similar equations:

| 8/12=n/48n= | | -10=y+3 | | 3-6k=3 | | 3n+4+4n=46 | | x=15+15/3 | | x=15-15 | | 0=0.5x+34 | | x=15+15 | | x=15•15 | | -14x-18=13+11x | | 3w*3+7w=4^2+4+6w | | 4(2n+3)=31-(n-1) | | 24.50m+28.00=20.25m+62.00 | | x=7.746.2÷x=5. | | 24.50+28.00=20.25m+62.00 | | 24-0.5x=0 | | -2+3x=4x-4 | | 3x+(-x)=8 | | Y=-0,5x^2+2,5x | | 5s+8=53 | | 9+4n=-31 | | (5)x÷5=7(5) | | -9d-4=14 | | 3(2x-1)=x+8 | | 115+39+x=360 | | 9x+7+3x=15 | | 15.22+0.08(x+3)=15.72-0.11x | | 13*((49+11x)/9)-12x=63 | | 8y-0.5=4y+1.5 | | 15.22+0.08(x+3)=15.72-0.11 | | m2=122° | | (8x-3)=(8x-3) |

Equations solver categories